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By Milton D. Van Dyke .

An attempt is made to develop a second
of problems of supersonic flow which can be
order theory. The method of attack adopted
the linearized solution as the first step.

.
approximation to the solution
solvedby existing first-
is an iteration process ustig

For plane flow it is found that a particular solution of the iter-
ation equation can be written down at once in terms of the first-order
solution. The second-order problem is thereby reduced to an equivalent
first-order problem and can be readily solved. At the surface of a
single body, the solution reduces ,tothe well-known result of Busemann.
The plane :ase is consid&ed h some detail insofar as it gives insight
into the nature of the iteration process.

Again for axially symmetric flow the probl~ is reduced to a first-
order problem by the ’discoveryof a particular solution. For smooth
bodies, the second-order solution can thenbe calculated by the method
of K&m& and Moore. Bodies with corners are also treated-by a slight
modification of the method. The computing time r~quired is several.times
that for a careful first-order solution. The second-order solution for
pressures on cones represents a great improvement over the linearized
result. Second-order theory also agrees well with several solutions
calculated by the numerical method of characteristics.

For ml three-dimensional flow, only a partial particular solution
has been fokd. As an example of a more general problem, the solution is
derived for an inclined cone. The possibility of treating other inclined
bo~es of revolution and three-dimensional wings is discussed briefly.

INTRODUCTION

As the linearized theory of supersonic flow approaches full develop-
ment the question arises as to whether more exact approximations are
practica.11 If viscous effects are large, refinement of the perfect-fluid
solution is useless. otherwise> however, higher approximations are known
to yields closer approach to reality. In intermediate cases, an improved
solution is desirable in order to assess the relative effects of viscos-
ityand nonlinearity.

. . .. .. .. . . . . . ..——-— —-. -.——..— - --- - ----- —.-. .— .. ---—- -------------- ----- — ----- .. ..—



2 NACA m 2200

The prototype of a higher-order solution for supersonic flow is
Busemann‘s series for the surface pressure in plane flqr past a single
body. This simple result is of considerable value in analyzing super-
sonic airfoil sections. Two terms of the series prove sufficient for
almost all re@mments; the extension to third and fourth order is
chiefly of academic interest.

The aim of the present study is, therefore, to ftid a second
approxhation, analogous to Busemann‘s result, for supersonic flow past
bodies which can be treatedby existing ftist-order theory. The natural
method of attack, and apparently the only practical one, is by means of
an iteration process, taking the usual.linearized result as the ftist
step. Several writers have applied this procedure to subsonic ?1ow. ~
supersonic flow, as usual, the solution is simpler, so that more general
problems canbe solved.

This paper is a revised version Of a thesis in aeronautics for the
degree of doctor of philosophy written at the California Institute of
Technology under a National Research Council predoctoral fellowship. It
has been made available to the NACA for publication because of its
general interest.

ITERATION PROCEDURE

Basic assumptions.- The problem to he considered is that of steady

three-dhensional supersonic flow of a polytropic gas past one or more
slender bodies. As indicated in the fol.lowin&diagram, the bodies are

. .

*

//////////

/

assumed either to be
ders parallel to the

)

“The yroblem. -

potited or to extend upstream indefinitely as cylin-
free-stream direction. In either case, the origin

— -—-—. -—- -—- — .- .-..——— -.
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of coordinates can be chosen so that all variations in body shape are
confined to the half-space x >0. Wind axes are introduced, so that
for x ~ O the flow is uniform and parallel to the x-axis, with veloc-
ity U and Mach number M. (For definitions ox all symbols, see
appendti.)

The bodies are slender, which means that at any point the component
of U normal to the surface is small compared with U itself. The
symbol G will be used throughout as a measure of this smallness. Thus
the ordinates of a body will.be written as e times a function of order
unity. Used in this way, G serves to distinguish terms of various
orders.

It will’be assumed that the full linearized solution to the problem
is available. Then the aim of this investigation is to provide a second
approximateion to the exact nonlinear solution. The linearized, or first-
order, solution is defined as the result of keeping only linear pertur-
bation terms in the equation of motion. Similarly, the second-order
solution is the result of retatiing products of perturbation qunt ities.
In addition, however, certain of the triple products are in some cases
found to be as important as one or more double products and are therefore
also retained in the equation.

.

It may be noted that the second-order solution will not generally
consist simply of terms of order e and E2, though this is the case
for plane flow. For emple, the second-order olution for flow past a
body of revolution contains terms as high as I~ log2e.

The flow is assumed to be irrotational and isentropic. This assump-
tion is justified in the first- and second-order solutions, since the
resulting error is found to be at most of the order of terms neglected
elsewhere.

Exact perturbation eqmtion.- Under the previous assumptions, there
exists a velocity potential Q In Cartesian coordinates, the equation
of motion is (reference 1, equation (39))

%2)%+(C2-
-2*=O

)02’ $lz~-

Here the local speed of sound c is related to co, its value in the
uniform stream, by

C2 = co2

where 7 is the adiabatic
indicate -differentiation.

(1)

(2)

exTonent. The subscript notation is used to

---- . .-— —— ----- ..—.— .—------+--- —..—-—- —-—- ~—---- ---— —- —— --.—.— —--------
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A perturbation potential @ is now introduced in the usual way.
For convenience,
stream velocity,

The perturbation
plied by, U.

Introducing

however, @ is normalized through divisionby the free-
So that

Q = U(x + a) (3)

velocity at any point is then the gradient of @ multi-

the perturbation potential into the equationof motion
gives, after so= manipulation, -

[(
?-120 +

2 x
@x2 +

b

)(#y2 + @z2 #= + @
)],W+ozz+

@yy# + f3zz9z2+ (4)

Solution by iteration.- The exact perturbation equation (equation (4)) r,
is completely equivalent to the original nonlinear potential equation
(equation (1)). Simplifying assumptions must therefore be introduced in
order to solve it: If it-is assumed that squares and products of the
derivatives of @ canbe neglected, the right-hand side of equation (4)
disappears, leaving the wave equation

This equation is the basis of the linearized or f st-order perturbation
7theory, so that its solution is designatedby 0(1 ‘.

More exact solution of equation (4) by means of iteration was first
suggested by Prandtl (reference 2). The procedure has been applied to
plane subsonic flowby G6rtler (reference 3), Hantsche and Wendt (refer-
ences 4 and 5), liuaiand Oyama (references 6 and 7), and Kaplan (refer-
ences 8 to 10). Schmieden and Xkwa,lki(reference 11) applied it to sub-
sonic flow past an ellipsoid of revolution. Most of these writers have
considered the stream function rather than the potential, which restricts
the method to plane or axially symmetric flows; The procedure is clearly
describedby Sauer (reference 1, p. 1~1 for the case of plane flow.

.-. . -- .. . .--, -- .. ---—-— ---- -- —..
.’
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‘1), mibject to proper boundary conditions,The linearized solution @
ii taken as the first approximation. Substitutingthis lnmwn solution
into the right-hand side of equation (4) gives

($n(2) (OZZ(2)-:213=(2)=Fl(x,y,z) (6)

where F
i

is a known function of the independent variables. This is
again a inear eq

YJ
ion, the nonhomogeneous wave equation. A second-

order solution. Q 2 , stiject to proper boundary con?litions,can be
sought by standard methods. The procedure canbe repeatedby mibsti- ,

tuting @(2) into the right-hand side of equation (k}and solving again.
Continuing this process yields a sequence of solutions ~(n) ~~ch,

under proper conditions, presumably converges to the e=ct sdlution.

This procedure bears a superficial resemblance to the Picard process
for hyperbolic equations in two independent variables (reference 12,
P. 317). There is, however, an essential difference. Iu the Picard
process, the characteristiclines of the ‘&.fferentialequation are known
at the outset, since the functions Fn do not depend on the highest-
order derivatives. Here, on the other hand, the characteristic surfaces
(the Mach cones) are initially unknown. Because of the fundsnental role
played by the characteristics in the theory of hyperbolic equations (see,
for example, reference 13, ch. II), it might be anticipated that-the
characteristics should be revised at each step of the iteration process.
Each step but the ftist would then involve equations with nonconstant
coefficients. The mibsonic counterpart of such a procedure is known to
converge under proper conditions (reference 12, pp. 288:289).

However, the procedure outlined previously maks no provision for
such revision. At’each stage of the iteration process, the equation has
the original characteristicsof the undisturbed flow. As a result, the
equation has constant coefficients,which greatly facilitates solution.
Fortunately, it will be found @at this procedure nevertheless gives an
improved solution nearly eve~here in the flow field. “

Second-order iteration equation.- Henceforth, only the first two
steps of the iteration process’wil.lbe considered in detail. It iS ~
therefore convenient to regard the second-order solution as consisting
of the first-o

t?
r solution plus a smaller additional term. Also, for

simplicity, o 1 will henceforthbe replacedky ~. Then -

where.

1

@=@(l) -

9=
J2) -.(l)

1

(7a)

(’m) .

.— ..---- .. ..—- .—--- --- -. ~ ——-- -—._-— —-— ——-- -— ---- —-— -
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Now@= 0(1) is a solution of the homogeneous wave equation (equa-
tion (5)), so that mibstituting into the erect perturbation equation
(equation (4)) shows that q, as wefi as o(2), is a solution of the
following second-order iteration equation:,

*+%z- j3&. = M2

I

Since ~ satisfies equation (5), the

the right-hand side of equation (8) canbe
eqyation for q becomes

-’-(4. +ff.2+ 1fiy2+-622)(ADC‘ f$y + fizz)+

ffwflyz+-$2.$22+ (8)

+ As)+3Ly@+6X)% 1
te~ (Ax+f$yy+ fizz) in
replaced by @&, and the

Ax.f$x2+ f$yfly2‘ flzzffz2+

12fiyz@y#z+ 2hx@z(l + AC) + 4CY(1 + dx)f$y

\

(9)

-1

Here the right-hand side contains not only products of perturbation
quantities but also triple products. The latter can be omitted for plane
flow, since they contribute terms of smaller order (equal to those f&d
in the next iteration). Otherwise, certain of the triple products should
be retained, since their contribution is as great as that of one or more
of the”double products and greater than any contribution from a third
approximation. It will be seen later that triple products should be
retained if they involve only derivatives normal to the free stream.
Those which involve x-derivatives can apparently be neglected, so that
the equation becomes

.

[

[(2+y - @] l$xxflx+ 4cyfly + 4ZI$Z +1
~+~zz- $2~ = M2

&#’# + 4y!z@yflz‘ fizzfiz2

Here
line

J(lo)

the triple products which may be.important are grouped in the second
of the right-hand side.

.—— .--— -— —,. ,, .-. —— ——— --. .
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The adiabatic exponent 7 will be found

.

combination

IKking this mibstitution,
finally

~ = (7 + 1)M2

2p2

the second-order

[(2N - l)J32&&

7

to occur always in the

.

iteration equation becomes

(11)

(M

Iteration equation in other coordinates.- In cylindrical coordi-

nates, eqmtion (12) becomes

(13)

The terms whose form is indicated in the last line are the triple products
which will be found to be negligible.

For conical flows it is convenient to introduce nonorthogonal conical
coordinates (x,t,e) where

$r
*X.=— (14)

If the body itself is conical, the perturbation potentials are reduced
to functions of two variables by introducing conical perturbation poten-
tials (reference 14) so that

#(x,-v) s xJ(t,e) ‘ (15)

-(2)with corresponding definitions for # and ~. The derivatives sre
given by

— -......—- .... .— -—- ——-. — . ------ —.— —— . ..— .- -—. -_ .-—
,. .-
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with the same rel~tions connecting 0(2) and ~2), and q and @.
The iteration eqyation becomes

.

.

(1-t2)~t+$+*=#

*(E$-@&)(iJ-@JFe,@--#-J$-,@J]

.

*

(16)

b

(17)

Here the grouping of terms corresponds to that in equation (13).’

Boundary conditions.- Physical considerations suggest that the flow

should s-atisfythe following conditions:

(1) The resultant velocity is tangent to the surface of the bow

(2) All flow perturbations vanish identically evemhere upstream
Oftheplane X=o

The theory of hyperbolic differential equations shows that these two
requirements are sufficient to determine the solution. The first imposes.
one condition along the timelike surface of the’body, and the second
imposes two conditions on a spacel~ surface. This corresponds m@he-
matically to the case of mixed boundary conditions (reference 12, p. lY2)
and leads to a determinate solution (see reference 13, p. 85).

The tangency corititionmaybe written formally as

Vfl”vs= o (18)

.

. ._——_ ---- —~— . . .—.
.-., . . .-. . ,.
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where S(x,y,z) = O is the equation of the surface of the body. In a
more useful form it becomes, for”the first- and second-order problems,

$.— = slope (on the surface) (l$la)
l+#x

@c +9C = Slope (on the surface) (lgb)
l+#x+~ “

Here @c qeans the cross-wind component of the normal derivative of @
at the surface of the body. In plane flow or for planar systems @c
is

$
, and in axially-symmetric flow @c is ~. The slope of the

body s measured with respect to the free-stream d&ection. H the
first-order tangency condition (equation (lga)) is satisfied exactly,
the second-order condition canbe simplified to

& = Slope (on the surface)
*

(lm’ ).

●

In linearized theory, the tangency condition (eqdation (lga)) is
frequently approximatedby neglecting @x. in comparison with unity. H

the corresponding approximation is made in the second-orderproblem, the
two tangency conditions becmne

ffc =Slope (on the surface) (20a)

●

This
wise

@c + (pC

m =‘lOpe(on the surface) (2m)

approximation will not be made except for plane flow, since other-
it apparently causes unnecessary loss in accuracy.

A planar system is defined to be a system for which the first-order
tangency condition can be imposed at a plane parallel to the free stream
rather than on the surface of the body (reference 15, p. 52). Thin flat -
wings are planar systems, while slender pointed bodies of revolution are
not. For planar systems the second-order tangency contition can also be
imposedat the plane, provided that the value of ~ is calculatedat
the surface of the body (~ and ~ maybe calculatedat the plane).
That is, for planar systems the tangency conditions are

(J?J)Y plane = (SIOm)(l + @X)p~e

.

(21a)

.. —-. . . ..-..- —..— .—.—-— .—..—.- -.— —.— --- —
. .

—.—-..
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()% plane = (SloPe)@ + d. + %)pMe - (@y)surface .(21b-)

Corresponding results hold for quasi-cylindricalbodies, which are bodies
of revolution whose radius varies so slightly that the tangency condi-
tions can be imposed at a circular cylinder parallel to the free stream.

The other two boundary conditions are that

mbY,4 +qio,y,z) =0 1 (22)

#x@,Y,’) +9J0,Y,Z) =0 ~

These conditions must=be satisfiedby the first-order solution alone and
must therefore be satisfied also by the additional second-orderpotential
alone. Consequently, the conditions are

fdo,Y,z) =0

d@,Y,z) =0 }
“

(23a)

qxo,Y,z) = d.

Determination

) (ah) .
qhJo,y,z) =0

●

of pressure.- When the potential field has been deter-

mined, the net velocity q at any point is given-by

q2=(u+u)2+#+w2 (24) .

>

where
.

‘1

(2)
. ;’”x

$

{

~ %(2)-=
u 42)

-.

w_

[

~z(2)-

~- 96(2)

.

. ,. --T - --- ..— --- -,
.’

(25)
.

.

w

----
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Cartesian and cylindrical coordinates. &cause the flow was
to be isentropic, the pressure coefficient is given by

where PO and P. are the free-s&eam pressure and density.

It is the practice in lide=-ized theory also to linearize thepres-
sure relation. Substituting equation (24) into equation (26) and
expanding gives

()@va+$Z+
Jr&

U2 uv2+#++j32_+M2
@u@

[

_-, &&y,,( ++)’] (2,,
~3, u2v2++

0~@u2

h linearized theory only the first term is ordinarily retained. This
is satisfactory for plane flow or flow past planar syst’elns,since the
contribution of the remaining terms is truly of higher order. b fact,
for plane flow past a single body it happens that the next two terms
cancel identically.

For slender bodies such as a cone, however, orders of magnitude
are not so clearly distinguished. Eusemann suggests (reference 14) that
the second temn is then sufficiently tige compared with the first that
it shouldbe retained also. This view is supportedby Lighthill (refer-
ence 16),who shows that the resulting qolution is correct up to the
otiderof the quantities contributed by the second term. Again, the
third term, which also involves squares of perturbation quantities, is
comparable with the second at high Wch nmbers and might logically be
retained. Having gone this far, it maybe simpler to use the exact
relation. I

Each of these four possibilities for the first-order flw.~st a
5° cone is compared with the exact solution (reference 17) in figure 1.
The series (equation (27)) is seen to alternate in this case. It con-
verges so slowly, however, that linearizing the pressure relation intro- “
duces much greater errors than linearizing only the equation of motion.
Adding each of the quadratic terms in turn causes fluctuations nearly

. as great as the error due ~rectly to nonlinearity in the equation.

The point of view to be adopted here is that calculating the veloc-
ities and calculating the pressure are two essentially distinct

. .—.- . . .—— . . - .—- -. . --- -. --— .. -- :------ - —--— - -- —----—— - --_— .— - -- -
,$ , . . -. ,..
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operations.:A certain degree of approximationmaybe necessary in order
to solve for the velocities, but the pressure relation need not then be ,.

approximated to the same etient simply for the sake of consistency. For .
it may happen that the resulting errors (though of the mama mathematical
order) are greater than those due to the original approximation. Indeed,
this is evidently the case in the ftist-order solution for a cone and
W1 be found true to a greater extent in the second-order SOIUtiOn.. ‘

Moreover, in the second-order solution so many terms of equation (27) ,
must be retained that it is usually simpler to use the exact relation.
For these reasons, the exact pressure equation (equation (26))will be
used throughout except in the case of plane flow.

PIANEJ?LOW

The second-order solution for
plane supersonic flow was givenby
using the”iteration procedure, the
the flow field, including the ease

.

conditions at a single surface in
BUSenumn (references 18 and19). BY
solution will now be found throughout
when several bodies interact.

The solution for lilaneflow is of interest chiefly insofar a; it
serves-as a guide in more complicated problems. In p&icular, it pro-
vides insight into such details of the iteration process as the question’
of its success and the effect of sharp corners.

Role of a particular solution..-The second-order iteration equation

can be attacked by standard methods, and in the case of plane flow a
solution can be found directly. For plane and axially symmetric flows,
however, a particular solution of the iteration equation can be written
down at once in terms of the first-order solution. This solves the
problem, because the complete solution consists of a particular solution
plus a solution of the homogeneous equation, and the latter canbe
obtained by existti-gmethods. That is, the additional second-order
potential maybe written as

q)=if+x (28)

where
. I

v any particular solution of nonhomogeneous iteration equation

x a correction potential which is a solution of correspon~ng
homogeneous wave equation and serves to correct the tangency
condition

!ITEproblem f’or X is the Usual”first-order problem whose solution is

assumed to be known.

,

.,.

.. . . — -..— .. -—— —.. ..—. — — —.- —,, ,.. .
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The role of the particular solution is to transfer the

13

nonhomogeneity
in the problem from the equation, where it is troublesome, to the b–&ndary
conditions, where it can be handled by existing theory. For linear par-
tial differential equations it is always possible in principle to trans-
fer nonhomogeneities in this way from the equation to the boundary condi-
tions, and vice versa, by adding a suitable function to the dependent
variable (see reference 20, p. 236). .

Since the particular solution $ wilJ be found in terms of the
first-order solution, it will vanish upstream of the plane x = O. Then
the correction potential must also vanish there, so that two boundary
conditions are given by

X(o,y,z) = X.,Jo,y,z)= o “ (29)

From equation (19b1), the tangency condition for X is foundto be

$C++
“Wx+xx=slclp-e (on the surface) (30)

or, in the

(*Y +

,,

case of planar systems, from equation (21b)

%)Pwe = (S1.ope)(l+ & +*x + X.)plae - (&)sWace (31) “
t

It shouldbe noted that, although q
this is not necessarily true of either *

Particular solution for plane flow.-

plane flow is

The general solution is-

@(x,Y) = H(x - By) +

where H ~“d J are functions chosen so
conditions.

z

is
or

The

o

J(x

small compared with ‘fi,
X alone.

first-order equation for

(32)

+ By) (33)

as to satisfy the boundary

.. —- —.._ -.. — ..— ___ .. -,. .- .-— -. -.— .—— . ..s . . . . . —-— -. _-— .---—.- . . ----
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In the iteration equation, all triple products can be neglected,
and equation (12) becomes

(34)

It‘canb: verified Mreqtly that a particular solution of this equation
is given by

(35)

To this must be added a solution X of the homogeneom equation (equa-
tion (32)), which’hak the fopn

where li.and
conditions.

For flow

,.

x = h(x - PY) + S(X + BY)

j are functions determined by the

Past a slr@e boundary (such as one

(36)

second-orderboundary -

surface of an airfoil)
the first-orde~ potentifi (equation-(33))coqta$ns only one or the other
of the functions H and J. In this case $W$$ = $2&$x so that the

iteration equation reduces to

The particular solution may then be simplified to

(37)

(38)

and the correction potential contai& only h or j, according as the
ftrst-order solution contains only H “or J.

Flow past a curved wall.- As an example of the application of the

particular solution, consider flow past a inillwhich at some point
begins to deviate slightly from a plane (see the folluwing fi&e).
The wall can be represented by

#

Y = Eg(x) (39)

.-

.

,..

. .

.. .. —— -- -— -—- ---- .—-.. — —.y- ----- - ----
. . .,.
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where 6 is a parameter small compared with’unity and g(x) is a
continuous function of order unity which vanishes for x ~ O.

,.

Y

1
1’

/

/

Flow past a curved wall.

This is a planar system,.so that the tangency conditions are given
by equation (21). The approximateion of equation (20) can also be made.
Consequently, the first-order problem is

The solution is

dy(x,o)=“Ggl(x)

@(o,Y) = f&(o,Y) = o }

Substituting into the right-hahd side of
iteration equation

J.

(40)

(41)

equation (34) gives the

Pyy - P2~ = *NG243’(X- BY)f3”(x - 13Y) (42)

—.— .—. ——-— . .- . ...= —.— ——- .-. .———..—. - ----
,.
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According to equations (38) and (36), the solution is
/.

(43)

.
Imposing the approximate second-orderplanar
tion (21b).) gives

{
-#p’(x)12 - Ax)d’(x)jh’(x) = G22 -

tangency condition (equa-

1

(44)

so that

h(x) =

.[ ~

-G2 g(x)g’(x) +

J

M2(N - 2) x

2$2
0

The complete second-orderperturbation potential

J2) = -; g(x . BY) ~

{

62 g(x - PY)”g’(x - BY) +

TM
the

same result can be found by solving equation
impulse method (reference 1.2,p. 164).

is therefore

(45)

M%
~Yp(x - 13Y)-J2+

(46)

(42)directly, using

On the surface of the wall, the streamwise velocity perturbation
is given by

u-=
u

--; g’(x) - M~,; 2 ~z[g’(x~z (47)

The pressure coefficient at the wall can now be calculated frcm equa-
tion (27) which, upon replacing N by its value from equation (lJ.),
gives

Cp=; “ (y+l)M4-4~2
Gg’(x) +

2P4
~g%c)]z (48)

This is the well-known result of Busemann (references 18and 19). To
second order, the surface pressure coefficient depends only upon the
local slope.

-. —--- . . .. . . .—. .., . . . .... .



‘3 NACA TN 2200 17

.

Role of characteristics.-It was pointed

because of the underlying significance of the

out previously that,

characteristic surfaces
for solutions of hyperbolic equations, it might be expected that the
characteristicswould have to be revised successively at each stage of ‘
the iteration. However, an iteration process was chosen which permits
no such revision. It is therefore pertinent to inquire in this smle
example what role has been played by
characteristics.

Only one of the two families of
The original characteristics of this

w—=
dx

the original and the revised - ~

.

characteristicswill be considered.
family are the lines of slope

1“

F (w)

These are the Mach lines of the undisturbed flow which run downstream
from the wall (see the preceding -gram). They qre also characteristics
of equation (32) in the mathematical sense (reference 12, ch. 5; refer-
ence 13, ch. II).

.
It can readilybe shown that, if the

r7
st-order streetwise perturba- ‘

tion velocityat any point in a flow is, u 1 , then the revised local
values of Mach nuuiber-and ~ are

[
M(l)=M1+

given to ftist order by

“ I@=== PF+M2(N- 1)$’]

(5@)

I

(50b)

By using this result together with the first-order solution (equa-
tion (41)), the revised downstream Mach lines are found”to have the slope

(5U ‘

These are not the mathematical characteristics of the iteration equa-
tion (equation (42)) for the reason that fractions of the highest-order
derivatives have there been transferred to the right-hand side and
regarded as known. Mathematically, the characteristics continue to be
given by equation (w)., .

Physically, the characteristicsare lines along which discontinu- ‘
ities in velocity derivatives are propagated, and this definition is

._ .__. .— - . — . . . . ------ —— -. ..-. —.. .——- — —.- - ..-— —-------- . . - . - - ..-.
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completely equivalent to the mathematical one (reference 12, P. 297).
Therefore, in the second-order solution derived above, discontinuities
in acceleration must occur along the original characteristics.

Suppose, however, that no such discontinuitiesoccur. For flow
past a single body the downstream characteristicsare also lines along
which the velocity iS constant> provided tmt shock waves do not aPPe~.
Setting

it is seen that the velocity is constant if

.

For the second
along lines of

w
~(2)

%(2)
—=-p=-pax

(52)

(53)

approximation (equation (46)) the velocity iS const~t
slope

[ 1* ll+!$.,(X-J3Y)—=.
dx P

which, according to equation (50b), are the revised
Consequently, although the characteristicshave not
mathematical sense, the solution behaves physically
long as discontinuities do not occur. The question
will be considered in the next section.

.

(54)

characteristics.
been revised in the
as if they had, so
of discontinuities

The connection betmen the original and revised characteristics
can be interpreted physically. The right-hand side of the iteration
eq~tion may be regarded.as representing the effect of a known distri-
bution of supersonic sources throughout the flow field. The influence
of this source distribution spreads.downstresmalong both families of
original characteristics. The resulting velocity changes are just such
that the second-ordervelocities become constant along the revised
rather than the original characteristics.

Finally, it is interesting to note that the second-order potential
is constant-~n lines which
istics. For, setting

d0(2)

bis=ct the original and revised character-..

= 0X(2) dx+4y@) dy=o (55)

.

,.

.———.— .. . .——+-.. ——. —
. . . .
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r

..

0(2) is found to be constant along lines of slope

.

[

dy_~l+M%
dx P 1

~ Gg’,(x - py) (56)

Flow past a corner and a parabolic bend.- A simple case in which

discontinuitiesmay occur is that of flow past a sharp corner. The exact
solution is known to involve an oblique shock wave with attendant veloc-
ity discontinuities for compression and a continuous Prandtl-Meyer fan
for expansion.

Denoting the tangent of the deflection angle by G, positive for
compression (see the following figure), the function g(x) appearing

Y

t
I

I
I

I

/

/
X=PY “

/

/
.

_L_.-jjx .

.

Flow past a corner.

in equation (39) is

{

o
g(x) =

x
(57)

. From equation (~) the second-orderperturbation potential is found to
be

@(x,y) =.: (X- PY).+$(X-PY) -$2X (58)

.- -— -- . . >- -—---. —---—-— —-- —----- — .. ----— —----- .-—. .——--- -—-
., ,..
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to the right of the,line x = ~y and zero to the left. Consequently,
in either compression (c >0) or e~ansion (G < O) the second-order
potential.stiers a discontinuous drop along the Wch line from the
corner, of strength proportional to the distance from the corner. Such
a discontinuity cannot be admitted, whi6h indicates that the iteration ,
process fails i.ntliisregion. “

In the case of compression, the solution canbe correctedby
analytically continuing the perturbation potential upstream until it can
be joined continuously to the free-stream potential. (This is permis-
sible since the line of discontinuity is not actually a characteristic.)
From the result of equation (56) the juncture is seen to occur along the .
line from the corner which bisects the upstream and downstream lkch
directions, as tidlcated in the following

-/

diagram:

.

,

Mach lines before-and after adjustment
of potential discontinuity.

.

The adjusted &conttiuity corresponds to a shock wave, for it is known
that an oblique shock bisects the Mch lines to first order (refer-
ence 13, p. 354). In the case of ~sion, this type of correction
cannot be 3ustified, since it would involve continuation of-the free-
streti potential across a true characteristic. Instead, a Prandtl-Meyer
fan must be inserted. \

Evidently
angular region
In particular,
of the wall.

the iteration process is successful.except within an
of order G lying near the Kch line fr~ the corner.
the pressure is-given correctly everywhere on the surface

.

.-— —. - - ——-. . -— --- - _..,. ——

I

1.
.
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It is enlightening to observe that the alternative ~thod of it~r- .
ation, in which the characteristicsare successively revised, fails in
the same region. The potential is dmible-valued over a fan-shaped region
in the case of
in the case of

compression and is left undefined over a similar region
~nsion (see the fofiowing diagram). The same artificial

Second-order flow pasta corner using revised characteristics.

corrections are necessary to complete the solution.

Consider next flow past a parabolic bend which is representedby

From eqmtion (~) the
be

Y +2 x~o. (59)

second-orderperturbation potential is found to
.

9(2)(X,Y)= -$ (X- fly)2-M2(N&-3G2 (X-~y)=32y(x43y)2 (60)

The potential and also the velocities are continuous, so that the
previous difficulties do not occur. The acceleration is discontinuous
across the original characteristic x = PY~ wtich in this case happens
to be also a revised characteristic. However, a new complication arises.
It is well-known that, in the exact solution for the compressive case,

- - . -. . - .- ---- ----,———.— .-. —-. ..— —. . .~ - - ..-—.--———-—-..
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the characteristics

Y

t

q

I

I

form an envelope, as shown in the accompanying figure.
..

Inside the

.

First- and second-order flow past a parabolic bend.

CUSP the potential is triple-valued (reference 13, p. 111).
so that a sho& wave must be inserted. This envelope must also arise-in ‘ .
the second approximation, since the characteristics are no longer
parallel. However, the second-order potential.givenby equation (6o)
is single-valued, so that it cannot predict the formation of an envelope.

.

Agati the iteration process fails ina part of the flow field.

It canbe seen that the alternative iteration process, using revised
characteristics~will produce an envelope.

Convergence for plane flow.- The examples just considered indicate
that the success of the iteration procedure should be carefully investi-
gated. A step of an iteration process maybe considered successful M,
in some sense, it significantly improves the solution. In particular,
one is interested in the success of the second-order solution.

It shouldbe noted that a divergent process maybe successful for
many steps and that, on the other hand, convergence does not necessarily
huily success. b practice, however, one would expect a convergent
pr~cess to be successful.
not amenable to analysis.
iteration procedure canbe

Unfortunately, proofs
not been obtained, even in

As used here, success is a subjective nbtion,
Consequently, only the convergence of the
considered in any detail.

of ~ficient conditions
the case of plane flow.

for convergence have
However, the above

. .—— -— —. .—..—-.— .-
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examples suggest certain conjectures regarding convergence. These will
be stated and some arguments for their plausibility will be advanced.

For flow past a slightly curved plane wall representedby y = ~g(x)
the solution obtainedby iteration using the revised characteristics is
conjected to converge in any bounded region adjacent to the wall provided
that

(a)

(b)

If g(x)

G is sufficiently small #

g(x) is continuously differentiable

has only a piecewise continuous derivative, the convergence
holds except possibly in fan-shaped regions springing from each corner,
which lie near the original Mach line and subtend an angle of order G.

For the iteration process actually adopted, in which the character-
istics are not revised, the first n steps are conjectured to form part
of a convergent process provided that

(a) e is sufficiently small

(b’) g(x) has continuous derivatives up to (n.- l)st order if
the potential is required, nth order if the velocities are required

If condition (b*) is satisfied only piecewisej the result holds except
possibly in fan-sha~d regions springing from each corner.

In the first case, condition (a) is necessary in order to insure
that the solution be unique, as is clear from the example of the para-
bolic wall. The above examples also show that condition (b) is necessary.

If the sufficiency of these two conditions is assumed, their connec-
tion with condition (br) in the second case can be illustratedby analogy
with a mathematical model (suggested by Dr. C. R. DePrima) which retains
the essential difference between the two iteration processes - namely,,
that the correct characteristicsare not used in the method actually
adopted. Consider the first-order problem given byeq~tion (b):

$%O,Y) = @x(o,Y) = o. J

(61)

where P = 1 has been taken for convenience. The solution (eqution (41))
Was

.

... . . -. —.- --- . .. . . . . — .-. =..———.- ----- .-— —. ----— — ———— —— -. —- ——- —-- -—-. . ... .



---- . . .

24 NACA TN 2200

.

# = -eg(x - y) (62)

Now it is attempted to solve this pro~lem using characteristicswhich
differ from the true characteristicsby
equivalent problem

and
can

#m- (1 - ddxx

!lf#x,o): %’(x)

fKo,Y) = #x(o,Y)

0(6). Thus consider the

.
= ~tin

1 (63),.

= o
J

solve by iteration. h the first approximation the right-band side
be neglected, so that

dyy-(l-+if==o (64)

which has the solution, subJect to the boundary conditionsl

+1) = -W(X - FW) (65)

Substituting this into the right-hand side of equation (63) gives the
iteration equation for the second approximation:

fin- (1 - G)@= = -Gzg’qx - )/ffy) (<d )

Using the impulse method (reference 12,
subject to the boundary conditions,

@)
= -G3(x - mY) +

I

p. 164) gives the solution,

L2,
p e Yg (x.- -Y) (67)

But this is just the Taylor series expansion, correct to 0(G2), of the
true solution (equation(62)). Subsequent iterations add additional terms
to the expansion. Hence, despite the use of slightly incorrect charac-
teristics, the iteration process converges to the correct solution.
The
the
for

connection”between conditions (b) and (b1) is thus seen to be that
existence of sufficientlymany centinuous derivatives compensates
the fact that the wrong characteristicsare used. .

.

●

.

.—.—. -— . . -.. . . . . .. . . --.
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AXIALLY sYMmTRIc FLOW

25

,

Before discussing the gene~l solution for bodies of revolution, it
is convenient to consider the simple problem of a cone. In this case
the second-order solution can be found directly. The results will be
useful in indicating which triple products should be
general case.

Flow past a cone.-
angle tan-l~, as shown

I

Consider flow past a slender

in the following diagrsm:

r.

t /

i ./

/
tl =

retained in the

cone of semivertex

I

\

\

\

Flow past a cone.
.

The flow is conical and axially symmetric, so that the iteration equa-
tion is givenby equation (17) with ~-derivatives omitted. hcluding
the boundary conditions from equations (19a) and (23a), the first-order
problem is

&(1 - ta)jitt+ ~= o

$7.($C) [=cl+~(pG)-

‘1. ~

pc~($ej (68)

?(~) =jl&) =0

. ...- ..-— . .. ...-. .— -. ——--- —.. . ------- ----- ..— —— --- —---— —-- --— -—— —---——---
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Using the integrating factor t/~=-, the equation can be integrated

.,

.

to give the well-known

which is understood to

result that

$= -A(sech-~ - ~) (69)

vanish except within the downstream Kch cone,
where t ~ 1. The tangency condition is satisfied by putting -

At the Kch cone (t = 1), all velocity perturbations vanish, so that
the first-order solution predicts no deflection of the shock wave from
the Wch cone (see reference 13, p. 403).

%bstituting the first-order solution into the iteration equation
(equation (17)) gives

[
(1 - t2)~t + ~= A2M2 2 ~+ 2(N - 1) ~“-P2A q] (na)

1- t.

and from equations (19b*) and (23b) the correspond@Z
axe

P%(PE) = $?(w) - IwJw)]

A

boumkry conditions

(71b)

(nc)

Equation (71a) can againbe solved using the integrating factor /t -*
The various integrals encountered can invariablybe treated=by integrating
by parts one or more times. .Using the second boundary condition, the
complete conical second-orderperturbation potential is found to be

+)(t) = (-A sech-% - i~)+ A%2~(sech-% - ~~g) + ‘

(sech:%)2 - (
3121~2A (~ - t2) +

N + 1) ~= sech-% - ~
t2

0~6(sech-%)~ (72)

----- ——- -- —. -— .-— - .- -—,,, .
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From equation (J-6),the streamwise and radial velocity perturbations

27

are

u-=
u [-

-A sech-% + A2~ B sech-% + (sech-%)2 - (N - 1) ‘,ech-~ -

1dc -(N+l)-&3% #
V1 - t%

(73d

+(I?+l)++

(73)

The constant B must be adjusted so as to satisfy the tangency condition,
equation (71b). In actual computation it is easier to adjust B numeri-
cally in exactly this fashion rather than to calculate it from the cuniber-
some expression which could be written down. The pressure coefficient at
any point can thenbe calculated from equation (26).

.
The la~t,~erm in the bracket in equation (71a) is the triple

product ~2~t~2 which is$retained in iteration equation (17). Its

retention is now justified by noting that its contribution - the last
term in equation (72) - is of the same order as other terms near the
‘surfaceof the cone (t = 136). Actually, it contributed a second term,
which has been neglected since it is at most of order ~6sech-1~~. It
can also be verified that the other triple products, whose form is indi-
cated at the end of equation (17),are in fact negligible, since they
contribute at most terms of order ~6(sech-lB6)2. Corisiderationof a
further iteration

P
dicates that a third approximation would add terms

no greater than G (sech-lJ3c)3,which is greater than the terms just
neglected.

The second-order result for surface pressure coefficient is com-
pared in figure 2 with the exact solution (reference 17) for cones of
5°, 10°, 15 , and 20° semivertex angles. Also shown for comparison are
the first-order results based upon the exact expression (equation (26))
for the pressure coefficient. The second-order solution is seen to pro-
vide a much better approximation throughout the range of Mach numbers up.
to the point at which the Mach angle equals the cone angle, beyond which
the perturbation solutions have no physical meaning.

.

.— . .- --.— . .—.+. .. .—.— .-.—. - ..,.—--——.Z-- . -.—— ..--— - -
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1.

.

Shock-wave angle.- The solution for plane flow past a corner
suggests that the second-order solution for the cone may fail near the
lhch cone. However, if it is valid there, a first approximation to the
shock-wave deflection and, consequently,.theentropy change can be calcu-
lated from the fact that to first order an obliqm shock bisects the Mach
lines. It was noted before that first-order theory predicts no differ-
ence between the shock position and the M&ch cone.

Assume provisionally that the solution is valid at the kch cone,
while indicatingby ?, the possibility that it is not. F&om equa-
tion (73) the velocity perturbations just behind the &ch cone are.

0g ~-m2Nek
u t.1 =

}’

(74)

()
v 7 2j3M2NG4
Vt=l =

so that the perturbation is normal to the Mach cone. Here A (equa-
tion (70)) has been.approximatedby 62. From equation (50b) the cotan-
gent of the revised Mach angle just behind the cone is found to be

The

the

upward stream inclination there is

Uch lines have the slope
v ()approximately ~

u t=l’
so that

Mach cone by

(75)

Therefore, the slope of the shock wave cliffers from that of the original

1 ? M%T2 ~4 . (y + 1)21#,4
tan L--=—

$$ 4p5

This problem has been treated rigorously by Lighthill
by Broderick (reference 22), who find that actually

which is 1A tties the above result.
2

(76)

f35

.- - ——- --- .——->

(77)

(refere~ce 21),and

.

.

(78)

,

‘Thediscrepancy means that the

.. . . . ..-- ..- .— ---- -. .—----- - .-
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second-order solution fails near the Mch cone. It seems remsr~ble
that the result is in error only to the extent of a constant factor.

The entropy increase through a weak oblique shock wave is propor-
tional to the cube of its inclination away from the Mach lines. Conse-

. quently, the entropy rise through the shock wave from a cone is o(e~),
as noted by Lighthill (reference 21).

Particular solution for axially symetric flow.- Consider flow past

a body of revolution which is either a slender pointed body with nose at
the origin or one which extends indefinitelyupstresm with-constant

<0 (see diagram).radius a for x . The latter shape corresponds

r

t
1
I

I — -- - —-

+
r

t

r = R(x)

.
I

-— -—

Flow past bodies of revolutiori.

to

the external flow past a sharp-edged, open-nosed body with supersoriic
internal flow. With slight modification the m.ibsequentdevelopm&t can
be applied to internal flowas well. The meridian curve canbe repre-
sented in the first case by s

r =R(x) = eg(x) X>o (79a) .

.
.

,.

. . . . . .- .. .. .. . .. . ..— .—— —— - —- --—— — -— ————-— --- —— -— -- --
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and in the second by

-.

{

a- x~o

R(x) =
a + Eg(x) X>o

(79b)

Here 6 is again a parameter small compared with unity, and g(x) is
a continuous fiction of order unity which vanishes for x ~ O.

The first-order problem is

fifm+bw==o
r

&(x,R) = R’(X)[1 + &(x,R)l

@(o)r)= @x(O,r) = 0

The solution is kno& to be (reference 23)

L
-$r

fl(x,r)=-
F(~) d~

b (x - E)2 - p2r2

(80a)

(80b)

(80C)

J
Osh-l ~

$r
=- F(x - ~r coshu) du

o (81)

The second form is useful for carrying out differentiation,after which
the ftist form can be restored. The derivatives which will be required
are

. . ..- —. ——---- -——-—.-— ——..
. .
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,

With coordinates as shown in the preceding diagram, the lower limit of
integration b is O for the pointed body and -Pa for the semi-
inf.initebody. The function F(x) maybe interpreted physicallyas the
strength of a supersonic line source along the x-axis. It is determined
by the tangency condition, equation (80b), which gives the following
integral equation of Volterra type for F*:

nx-f3R(x) T PX-PR(X) 1

/“b
be

The second-order iteration equation is found from equation (13) to

(84)

The solution for the cone suggests that the terms indicated in the last
line are negligible. .

It will now be shown that a particular solution of
is given by

this equation

(85)

The first group of terms contributes the first line in equation (84),as
can be verified by direct substitution. The last term ti equation (85)
accounts for the term ~&2 as follows:

\ ,

. . ..- ..-. .. . - .... —-----.. —-.———— .—..— —- .— - .. . .. . —- ——- .—. . . .
..-
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. ( )=#IT&2-$2#. ~ .&+ -r-~ rk2 (86)

.

.

~ satisfies eq&tion (80a).where repeated use is made of the fact that
The last group of terms consists of triple products involvi~ x-derlvatives,
which have already been neglected in equation (84), so that the result is
proved. .

The correction potential X‘ is a solution of equation (80) and can
be written as

. .
-P. “ “

x-b

[~ ./

cosh-l —
f(g) d~ =

B.

X(x,.) = - f(x - @ coshu) du (87) ~

(x-g) 2-P2F -0

Using equation. the second-ordertangency condition (equation (19b’))
is found to be

~r(x,R) + ~

/

‘-’R;::,;;:,:,=R[x(xjR)-f-’Ri(:;~f12R2] (88)

b

which is again a Volterra integral equation. .

Methods Of SOIV~ integral equation.- Discovery of a particular

ihtegral for bodies of revolution reduces the second-order problem to
.

.

—— .. . . . .. -.-. —--- ,. .=-. ...-—., - ----- .. ,---- . .
.. .- —



8 NACA TM 2200 33
?

the same form as the first-order problem - namely, the solution of a
Volterra .titegralequation. Various methods of attacking this problem
are listed by Hayes (reference 15, p. 140).

. An indirect method consists in assuming tht the unknown source
strengths in equations (81) and (87) can be represented by a few terms
of a polynomi~, for example, that in equation (81)

F(x) = c~x+c&+. ..+cn# . (@)

The resulting solutions were introduced in a more formal manner by Hayes
(reference 15, p. 38), who has discussed their properties in detail. The
first term alone gives the.potential for the cone, equation (69). Addi-
tional terms give the solution for simple families of shapes. However,
the method is not suitable for bodies having discontinuities in slope or
curvature. Consequently, a more direct procedure is desirable.

. K&m&n first intro~ced an asymptotic solution of the integral equa-
tion (equation (83)) which has come to be known as the slender-body
approximation. For slender bodies, the source strength’ F(x) appearing=
in equation (81) is found to be approximately proportional to the rate
of change of cross-sectional area. Thus

F(x)s &!M&L=R(x)Rl(x) (90)

where S(x) = ~(x) is the cross-~ectionalarea of the body. Lighthill
has shown (reference 16) that if R(x) and its first twq derivatives are

- of order. e, and R! is continuous, then this determination of F(x) is
correct to the order of terms retained in the first-ortir solution.
purposes of the second-order solution,

For
it canbe shown that’ F(x) maybe

determined in this way only if Rtl is also continuous. This means.that
the body must have continuous curvature, which is a severe limitation.
Moreover, the slender-body approximation is found generally to cause
unnecessary loss of accuracy even though the mathematical order estimate
of the error is small. Consequently, this approximation is not to be
recommended if it can be avoided.

.
The most satisfactoryway of solving the integral equations is to

use a step-by-step numerical procedure. In first-order theory the usual
method, introduced by X&m&n and Moore (reference 24), is to assume that
the unknown source distribution canbe approximatedby a polygonal.graph.
This is equivalent to superimposing a number of conical source lines of
&Kferent strengths, each shifted downstream with respect to its prede-
cessor, as indicated in the folluwing diagram:

.

. . . .—-- -.-— —. - —-—- --- ----— . —n --—-— - — — . . . . -— - --- . . - . —— — —.— .-

. .

. . . . .
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F(x)

t

-—

+

Equivalence.of polygonal source and sum of conical sources.

The latter viewpoint is more convenient for computation. The strengths
of the source lines are determined in succession by satisfying the
tangency condition at a series of points on the surface of the body.
The details of this procedure are clearly explained in reference 1,
Paw 77.

l?orpurposes of a second-order solution, this procedure must be
modified in one respect. The source distribution F(x) must not be
approximated by a polygon umless it dctually has corners. The reason
for this is that a corner corresponds locally to adding a conical source
line, which gives the solution for a cone. But it was found in the case -
of the cone that to second order the velocities are discontinuous across
the Mach Wave. This would cause false pressure jump in the flow field.

Instead, the procedure must be carried out using source lines of
quadratic strength. The source strength F(x) can thenbe approximated
smoothly, so that false pressure jumps do not occur. A single source
line of this type represents the flow past a slender pointed body with
a cusped nose (see sketch), as is cle& from the slen-&r-body”ap@oxi-
mation, equation (90).

I

Body formed

—. —-

by source line of quadrati~ strength.

.

.

.
●
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Method of solution for smooth bodies.- The second-order

will be described first for bodies having continuous slope.

35

solution .

Moddf’ica-
tions for treating

The procedure

sharp corners will be discussed in the next section.

is indicated in the following diagram. The axis is

r

Method of solution for smooth bodies.

divided into intervals by choosing points with abscissas ~nj at each of

which a source line is to begin. Good accuracy is usually obtained if
the inte~al length is not greater than P times the local radius. The
tangency condition will be imposed on the surface of the body at the
points Pn, which lie on the Mach lines from the points at En.

For pointed bodies, the first-order solution is started with a
conical source from the origin wldch gives the proper conical.tip. This
potential and the derivatives which are required are

.

.

. . . .. — ..—-- —.. — — — --— — -———- - ..-— — —.— -.———
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where .

.Co=
~2

~~ + e2se.h-lpG

and the semivertex angle of the conical tip is tan-le. No such term is
required for the semi-infinitebody.

The subsequent procedure is the same for either body. Quadratic
source lines are started fran each of the points El, ~2, and”SO forth.
For the pointed body ~1 is also at the origin, while for the semi-

infinite body it is at -pa. For the nth such source line, the poten-
tial and its derivatives are given by

(c“1 ‘1(fh)r = pcn(x- &n) ~nTn2- Tn sech-l.n

(Alhm = -2Cn sech-%m

(!-.=2(A&r = -Fen -
)

+ sech-%n
Tn2

where

‘n
. $r

x- E~

. - —.-— . -—. . :..

.

(92)

. . ..—. —.. _ ___ —.
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.

The constants ~ are determined successivelyby imposing the first-

order tangency condition in turn at each of the points Pn. From equa-
tion (80b), the condition is that

.

Slope (93)

where tbe summation begins with n = O for the pointed body and n = 1
for the semi-infinitebody. In this way, values of the complete first-
order potential @ and its first and second derivatives are calculated
at each of the points Pn.

The velocities due to the particular second-order solution” t“ can
thenbe calculated at the same points. Differentiating equation (85)
gives

,

r94)

*r= ~{dn(d + N@r) + @x ~ + l)dr + Ndn] - ~ @f(@r + w&)}

.

Fihally, the second-order correction potential. X is determinedly
repeating the procedure used for ~, finding new constants such that the
second-order tangency condition is satisfied. From equation (19b~), the I
condition is that

n-1

*r + ~ (Xn)r
= slope “

.

(95)

The second derivatives of X need not be calculated.
.

‘The complete second-order perturbation velocities are the sums of
the,contributions from @, ~, and X.

.
Then the pressure coefficient can

be calculated at each point Pn from equation (26).

The computing time required is several times t@t
first-order solution.

for a careful

,

---- ..—.-. . —- .--— —. -.— —,. —.— -.—., .—.-— —— ... .. —.-.-—-— -.— - .
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~eatint of bodies wtth corners.- Suppose that the meridian curve

of the body has a sharp corner, which for convenience may be assumed to
lie on the &ch cone from the origin (see fig.). Then the method of

,

Body with corner.

solution must be modified for two reasons. .
.

In the first place, the intervals between source lines would have
to be chosen eurbremelysmall in order to obtain an accurate first-order
solution behind the corner. !lhis&if’ficultycan be eliminated, however, ,
by adding a new solution which causes a sharp deflection of the stream-
lines. In this way the corner is effectively removed.

Sucha solution canbe found by approximatingto equation (83) in
the vicinity of the Ikch cone. The resulting Abel integral equation can
be solved to show that, in general, a potential having discontinuous .
nth derivatives results from a source distribution along the axis which

&.-
is initially proportional to xn i. ‘“2 ~equa-Setting F(x) = x
tion (81) gives

.

———- --..—. . .-—------ ---,-
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.

.

This integral represents the analytical continuation of the hyper-
geometric function, so that, except for a constant factor,

@(x)r) =
( )

(x-@)n&F$ & n+l,-~ (97)

where a is the radius at the corner. The potential is understood to
vanish except within the downstream Mach cone from the origin. The
hypergeometric,functionsoccurring here can all be expressed in terms of
c~pl=te elliptic integrals with %al modulus.

The solution for a corner is obtained by taking n = 1. Then

(98)

Here t is the conical variable introduced in equation (14), and

‘H “d ‘(w are the complete elliptic integrals of the

first and second kinds with modulus k such that k2 = ~.
l+t

.
From the tangency condition, equation (80b), it can be shown that

the above solution should be multiplied by

~R2’ - Rlf)[l + (~x)~
(99)

$ + R2’

. . .. . —.— -—— . ...— .—— —. .—-~. .——y. - _ .. ----- ____ —.- _
.,’. . .
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in order to cancel the corner. Here R1l snd* R21 are the slopes of

the meridian curve just before and after the corner and. (@x) I is t~

value before the corner. The first-order solution can thenbe continued
as described in the previous section. ,

The second difficulty which srises is that,.even though the first-
order solution maybe exact, the second-order solution described previ-
ously is incorrect behind the corner. It is clear that the local pres-

‘ s~e jump at a corner should have the value correspondingto plane flow
past a corner of the same angle. However, the second-order solution
described above yields the first-order, rather than the secc$nd-order,.
value of the pressure jump. The method of solution must be modified in
order to obtain the correct result.

The proper procedure would be’to fihd the solution for the case when
the corner has been slightly rounded off and then pass to the limit of a
sharp corner. However, the following simpler procedure is found to give
exactly the same result.

The particular solution * calculated from equation (85)is discon-
tinuous along the Ikch wave springing from the corner. El?the disconti-
nuity vanished at the corner, the solution could subsequentlybe revised
as in the case of plane flow (see diagrams of lhch lines in section
‘tFlowpast a corner andapara~olic bend”). However, there is a finite
jump in ~ d~ectlyat the corner, which c~ot be allowed. Conse-
quently, the co~ection potent~ “X must involve an equal and opposite

jlxlp. A potential having such a discontinuity is obtainedby setting
n= o in equation (97)0 men

-1
xx =-m-qs+(i%+)- ‘(MI I (loo)

xr=-%ia%l=~(=)-’(=].
Adding a suitable multiple of this potential cancels the discontinuity
in +. The second-order solution can then be continued as described in
the preceding section. It can be verified that the pressure jump at
the corner

It iS
viewpoint.

has then the correct second-ordervalue.

in@ructive to analyze the behavior of a corner from another
It was pointed out before that the right-hand side of the

.

.

.

.

“

.

.-

.—— ---.---—— *.. .— .—— —- ..-— .
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iteration equation may be considered to represent the effects of a known
distribution of sources throughout the flow field. b the case of a
slightly rounded corner, this source distribution will be weak except
between the Mach lines from the cmner. AS the corner shr* to a
point, the source intensity will.increase in t-t region in such a way
that the total strength remains constant. h the limit, the source
distribution will behave 1= a Dirac b-function along the Mach line
from the corner. The particular solution for plane flow (e~tion (35))
takes account of this impulsive function, so that the correct solution
is automatically obtained. ti the case of axially symmetric flow,

. however, it is clear that the particular solution given by equation (85)
misses the contribution of the hqmlse. It is therefore necessary to
correct this shortcoming by adding the step-function potential given by
equation (100).

Comparison with numerical solutions.- Theaccuracy of the second-

order solution for bodies of revolution can be evaluated by comparison
with examples calculated using the numerical method of characteristics.

The first bodyto be considered is a 12.5-caliber ogive, which has
a semivertex an@e of 16.260at the tip. The second-ordersolutionwas .
calculatedfor thisbody at a Mach numberof 3.24. This representsa
severetest of the method,becausethe Mach angleis then only10 percent
greater than the tip cone angle. Intervals were chosen such that the
points Pn layat 0.1, 0.25, 0.5, 1, 2, and3.5 calibers (fig. 3). The
pressure distributions calculatedly first- and second-order theory are
compared in figure 3 with the results of various characteristics solu-
tions sumarized in reference 25. The second-order solution apparently
coincides with the characteristics solutions to within the accuracy of
the characteristics method.. .

The second bodyto be considered consists of a cone of 10° semivetiex
angle followed by a circular cylinder. The characteristics solution for
,thifjbody at a I&ch number of 2.075 has been-givenby Liepmann and Lapin -
in reference 26. The first- an-dsecond-order solutions were calculated
beyond the corner using the modifications discussed in the preceding
section. Figure 4 shows the shape of the body, the location of source
lines, and the velocity distributions calculatedly first-order theory,
second+rder theoryj and the method of characteristics. @in, the
second-order results agree with the characteristics solution to within
the accuracy of the latter method.

Series expansion with respect to thickness.- An alternative method
of solving the exact perturbation equation (equation (4)) by successive
approximations is to assume that the solution can be exp&ded in powers
of the thickness parameter c. Thus the exact perturbation potential
is written as

—-—. ------- .- -—. -—-— . --- -:-----—— -——-—- -—.- --— ---—-—-— ——- .-——.-
. . .
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(102)

Substituthg into equation (4) &d equating like powers of G field a
sequence of equations

(1) (1) (1)

% + o~~ .p2Q==o 1
(2) (2) (2) ‘ II,

(103)

2M2~
(1) (1) (1) (1) (1) (1)

% + ’22 -
~2 On = N - l)f120= Ox + @w 07 +“ Ozx Oz

. I
.- .0.. ● I

which can be solved in succession. The first is again the usual linear- ~
ized equation. This”method was applied to plane subsonic flow in refer-
ences 4 and 9.

Schmieden and Kawalki f&t pointed out (reference 11) that the
power series assumed here does not always exist. In general, terms of
the form G~(log e)n begin .toappear in the third-order solution for
plane flow and in the second-order solution for three-dimensional flow.
This clifficfity can be met by assuming a more general series of the form

(1) (2) (3) (4) (5) ~
o = @6+ @E2+ I@+ lVklog E+ OE +.. . (104)

.

On the basis of this assumption, Broderick has developed a“secodd-
order solution for supersonic flow past slender pointed bodies of revolu-
tion (reference 27). The analysis is rather lengthy, since the simpli-
fication resulting from the discovery of a particular solution does not
appear. The results are ltiited to shapes for which the cross-sectional
area is given.by an analytic function, or at any nte possesses continuous
derivatives up to the fourth order. This is a severe limitation since,
for example, the two bodies discussed in the previous section are not
admissible.

Broderick?s result c=.be obtained by expanding the present second-
order solution in powers of t and log t for small values of. t. The
logarithmic terms arike from the series

.

*

. —— .- . — ..- —-. .—
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,

sech-% 3 *4-*=logg-; tz .-z . . (o<t <l) (105)

The expansion will now be carried out for the case of flow past a cone.

It is clear frcxnequation (70) that the constant A in the first-
order solution (equation (69)) is given approximatelyby .

.

A= C2 +... (106)

Sibstituting this value into equations (73a) and (73b), e~anding in
powers of t and log $ and imposing the tangency condition, equa-

tion (71.b)j shows that

B=-
2M2-1

(
E+ N+l+~ 10g p~

Then according to equation (73), the velocity
face of the cone are.

)s+””= (107)

.
perturbations on the sur-

V-=-
UG

Replacing N by its value from
the pressure coefficient on the

Cp =
( )

E2210g &-1 +

u

[( )
64 P2 log + 2 4M2+1-=

u -‘210g 1% - 2
log .&+ M2N+ @2+1

2dlog -+...
$C

+.. . (108a)

(lo8b)

equation (11), equation (27) gives for
surface of the cone

.

,4~,2@og&)2 - (5# +o++ (, +1, $+: M2+~]+

This is Bred.erickls

#
(109)

retit (reference 27, equation(81)).

-—-—- - —- —— — . . -.- ——-. — .. --— . ..- ..—-
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This series is compared with the original form of the second-order
solution in figure 5. For the most slender cone, the expansion in series’
causes only a moderate loss in accuracy. For more practical thicknesses,
however, the expansion reduces the accuracyto such an extent that for
the cone of 20° semivertex angle, Broderickis polution is inferior to the
ftist-order result. The reason must be that the “iterationprocess itself
converges more rapidly than do the subsequent expansions which are
requiredto reduce it to series form. Hence, terminating all expansions
at terms of the order of those retained in the iteration process results
in an unnecessary loss of accuracy.

THREE-DIMENSIONAL FLOW

Partial particular solution.- It might be hoped that a particular
solution, which so ~eatly shplifies the iteration for plane and axially
symmetric flows, could be found for the general three-dhensional case.
we various mbthods of existing first-order theory could thenbe applied “
immediately to the problems of second-order flow past such shapes as
inclined bodies of revolution and three-dimensional wings. ‘

A part of such a particular solution is found at once, beiqg c-on
to the two special cases. Consider the three-dimensional iteration
equation (equation (12)):

.r2(.N-1)B2w+

It canbe readily verified
. products in the last line,

that taking N = o

12j&#y + 2j&4& +

(110)
+ fizzfJz2

and neglecting the triple
a particular solution is given by

.

- +’=M2f& “
which appears in both equations (35)and (85).

The iteration equation is thereby reduced to

(111)

---- ...-.,

.

(112)

.

—.
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It has not been possible to find a particular solution of this equation
in terms of the first-or~r potential. The solutions for plane and
axitiy symmetric flow do not appear to suggest a generalization. On
the other hand, there is no assurance that such a solution cannot be
found, so that one is tempted to search further. E the triple yroducts
are neglected, the right-hand side of equation (.112)vanishes for
Y =-1 (r?=O). However, investigation of the previous solutions indi-
cates that the idea of here taking y = -1 is not legithate. .

.
In the absence of a complete particular inted, the reduced iter-

ation equation (equation (l12)j must%e attacked by more conventional
methods. In principle, it is always possible to find a particular solu-
tion of a linear nonhomogeneous eqUation with the aid of the fundamental .
solution associated with the!differential operator. For the three-
dimensional wave operator which occurs here, the fundamental.solution is

.

1

V(X - g)a - Pa[(y- T))2+ (z - ~)q

which can be interpreted as the potential at any point
inside the downstream lkch-cone from a unit supersonic
With the aid of Greents formula, it can
tion of

#
~ + ~zz ‘- $%=

is given by

(X,Y,Z) WW.
source at (E,q;~).

be shown that a particular solu-

= F(x,y,z)

,

(114)

where the integration extends throughout that “portionof the forward -
Mach cone from the point (x,y,z) within which F is defined. ,

In practice, the integration indicated in equation (115) is gener~
ally not feasible. For example, even the simplification of axial symne-
try reduces equation (115) only to a dmible integral of F(x,r) multi-
plied by a complete elliptic integral of complicated argument. Avoiding,
such integrals by disdovery of the particular solution clearly represents
a great simplification in this case.l

l(j~~ring the two methods would lead to the evaluation Of definite
integrals involving complete elliptic integrals, which might be of some
interest.

o

.—— -——— -.—- -— -_. .— —— —.... -. .—-------- . ..—-- -— --- ..-. .—
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In the following sections, one example of a three-~nsional. solu-
tion will be given, and the possibility of treating other shapes will be
discussed thereafter.

Inclined cone.- The problem of a cone at an angle of attack illus-

trates the use of separation of variables to reduce the three-tiensional
iteration equation to tractable form.

.
Two alternative coordinate systems are suitable for bodies of revo-

lution at an angle of attack. In wind sxes the body is inclined, while
in body axes the stream impinges on the body obliquely. The latter
system is simpler for ftist-order problems and is probably better for
the second-order solution also. However, wind axes will be used here,
since otherwise the iteration eq~tions must be rederived.

To facilitate hposing the-tangency condition, it is convenient to
apply an oblique transformation (see, for example, reference 28) P. 18).
This effectively unyaws the axis of the body (but distorts the surface)
while leaving the wave operator unc~ed. Thus three-different

Y
Y. nju\ I /

.

\

\

‘bx

Coordinate systems for.inclined cones.

coordinate systems are required, as shown in the above sketch:

o

—..— —... —- .—. --— ——— - -



NACA TN 2200 47 ‘

.

Wind axes: x,y,z

Body axes: E#nsg E)P)$ ~>T,d

Oblique sxes: X;Y,Z X,R,~ X,T,@

the latter two being used also in cylindrical and conical form.

To simplify the solution, it will be assumed that the angle of
attack a is so small that its square can be neglected. This will Rive
a solution nonlinear in the body thickness but l~near
therefore yield the correct initial slope of the lift
three systems of coordinates sre related according to

in a andwili
curve. Then the
the following table:

fg=x - ay x= ~+a~ x= x + ap2y x=X-a$2Y E=X-UM2Y x.g+c#q

~ .y+u y=~-ag Y=y+ax y=y-ax , q=Y Y=q

To this

.

approximateion

R=P

T
(

=Tl
)

-&m.coso

P

9=19

the surface of the cone is

‘s = $6

and the velocity components are related by

@p = j3~ + #(~ - T@a cos e

(luk)

,,

(l16b)
b

(116c)

(l17b)

(l18a)

(l18b)

..- ....-. .--—.-. . —.— — ----- --. .-.-— . -————--- -- .----— — ——- - -—— --—- -——---——----,. ..: ,.
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where, as in equation (15)? the COtiCal potentm U fitroduced by

O(X,R,@ = X~(T,~) (l19a)

where

T=y (l19b)

The first-order problem, referred to oblique coordinates, is found ‘
to be

#
(1- T2)-~+$+$y=o “ (120a)

The solution is the sqm
dipole (reference 1, p.

7(c0,63)=&(m.e) s o (120C)

of potentials for a conical line source and
74) agd has the form

~(T,@ =
(

-A sech-% - =)+ C(= - T sech-%). cos .
(1.21)

Substituting into the tangency condition (equation (120b)) and expressing
values of functions on the cone in terms of their values at T = Bc by
means of Taylor e~ansions, it is found that

1 + .@A
)

sech-l&

c &2 ‘,=

(1 + 2e2)~~- + j3%2sech-l@

.

.

(122b)

.

,

.-.—— ----- -. .- ——. . -,
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The streamwise perturbation velocity is

Then according
conical

-1 =
*

=

$. =(3- @II)+$-ii

=.-A.sech-% + (2C

. .

Cos @

+~)-.a=os.
T .

(123)

to equation (111)~ the partial particul~ solution is, ti
form,

.

1}
CT(sech-lT)2 IXcos ~

@I)+ #II)acos e

There remains to solve
equation (112) which, after

●

(1-T2)Tqq+*+-*=

J

. .

the reduced iteration equation
transformation of coordinates,

(tik)

givenby
becomes

Substituting equation (121) into the right-hand side gives

{(
.
)(1-&) -~+3+~= A& A2Nsech-lT -132A~ -

m.

[

2 2M(C i-pA)
sech-% 1]- aCOS ~ (126)+ N(2C + ~) ~ - 2~2JlC—
T&i T5

\

... .. ---- .- ...— . . ~—.—- .— —— -- --- .-— —— ---—.— ------- ..-——- ..—-— --—. -
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This is reduced to two total differential equations by

. ~(T,@) = @)(T) + @l)(T)a COS ~

Therefore the comlete second-orderpotential consists

NACA Tlv2200
.

setting

(127)

of a term indepm.
dent of cc plus &e proportional.to- u cos ~. The first of these must
be the previous solution for the symmetrical cone (eVtion(72))~ so

that ~1) is known. The equation for dll) is

(l-@%% T(II)+~(lI) ~11)T $

N(2C + @l) *- 2@2A~ ~
‘J?51

Setting

[

=-2AM%?(C+BA) ‘ech-%+
T&i

(128)
.

reduces this to a linear first-order equation in @ which can be inte-
gratedto find that

.

[(CF+l)(T) =~ D ~ - ) $+
T

Tsech-lT “+ (3C+2f3A)I?~

(C + @) NT(sech-lT)2 + 1$ j32~c-
T3

(130)

The tangency condition <equation (lgb’)) separates-intothe two
conditions

1 {[ 1[ 1}~[@l) +~(1) =~ @l) +@) -T~T(I) +~(1) at T= $f3

(131a}

.

.- -- . -—- .—. - -— --—
. . .. ,,
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.

.“

atT= @ (131b)

The first of these is the previous relation (equation (71b)) which deter-
mined the constant B in equation (72). Similarly, the second of these
determines the constant D in equation (130).

Series expansions for pressure and normal force.- Numerical results

have been calculated only for the case in which the solution is expanded
in powers of T and log $ Carrying out the expanston, the’constant D
is foundto be

D=
[

2M2+1

( )]
,Tlog; - 5N-”l +&+... @ (132)

.

Then calculathg the veloc!itycomponents from equation (118) and the
pressure frcm equation (27) gives, on the surface of the cone,

.

[(%?=(%Jo-4’l- E2 #log g
]

-~M2+lacos#+. . . (133)

Here (~). is the value for zero

tion (109). Integrating gives the
cross-sectionalarea:

angle of attack, given by

normal-force coeffic-ient~

equa-

based on

[(Normal force . Za”~
c~=l - 62 ‘210g h -2 1

~M2+~ +.. O (134)

~ po@(Area)

.

This result has been obtained also by Lighthill (re~erence 29), who has
calculated the lift on bodies of revolution having analytic meridian
curves by assuming a series e~sion for the velocity potential.

Stone (reference 30) has developed a solution for inclined cones
which is linearized with respect to a, but otherwise exact. KoPal
(reference
theory. A

31) has published-tables of-the numerical results of ‘&one~s
comparison of equation (134) with this exact theory and with

.. . . . .--— . ,- . ..-. —--— ------ —.-—.-—-—..-.--—.———— —————.-—- —-
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Tsien’s first-order
and 10° cones. The
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.

solutlon (reference 32) is shownin fig&e 6 for 5°
earlierdiscussionof seriesexpansionssuggests

that the agreement might improve if the solution were not expanded-in
series.

Shock-wave position.- lY the solution were valid at the Mach cone,
the velocity components there would be, from equations (72), (.118),(124),
and (130): . .“ .

(135)

For simplicity, using equation (122)j A and C have here been approxi-
mated by 62 and &2. Comparing equations (74) and (77) It is seen
that the difference between the shock-wave angle and the Mach angle

1#-

,

Hence the ratio
cone would be

— —

(136)

of the angular rotation of the shock wave to that of the

(137a)
.

It was seen previously that although the solution-does not in fact ‘
converge at the lkch cone, the shock-wave deflection calculated in this
way is correct for the unpitched cone except for a factor of 1$ It

might be supposed that the same correction factor would apply here.
‘Kopal (reference 31) tabulates.values of b/a calculated from Stonets
theory, and from these it appears that a factor of 3 ra%her than 1* is

$

required, so that actually .

(13P)
.

Figure 7 showsa coqkrison of thismodifiedresultwith the exactvalues
for a 5° cone.

It must be emphasized that equation (137b) represents nothing more
than a conjecture. It could probablybe verified, however, by extending ,
the solution of Lighthill (reference 21) or Broderick (reference 22) to
the case of angle of aktack.

. . .

,

.
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Future investigation.-Two large classes

touched upon deserve further study. One

of problems which have only

of these is wings; the
other, bodies of revolution at an angle of attack. The example of the
incl~ed cone was undoubtedly made awkward by the use of wind coordinates.
The iteration eqwtion sho~dbe rederived fi bo@ coor~tes ~dthe
solution extended to general bodies of revolution. It is possible that
in this form a particular integral couldbe discovered. That there is
good possibility of success with this problem is suggested by the fact
%t Lighthill.~s able to obtain a
series expansion (reference 29).

The possibility of discovering
equation might be investigatedmore
for general three-Wnensional flow,
should be studied.

general solution-by ass& a

particular integrals of the iteration
sfltematically. If none can be found -
special cases such as conical.flow

Possible treatment of wings.- Possibly the most useful application

of first-order theory is to thin flat wings. No attempt has so far been
made to find the second-order solution for a wing. It seems likely,
however, that solutions canbe found at least for conical problems. In
this case the iteration equation canbe reduced, by the standard conical
theory (references 14 and 28), to the problem of solving Poissonts equa-
tion inside a circle.

Two afficulties canbe anticipated. First, if the wing has sub-
sonic edges, infinite velocities arise there, so that the assum@ion of
small’perturbationsis violated. It is known that in first-order theory
this is no essential objection, since the pressure is found correctly
except In the immediate neighborhood of the singularity, and the inte-
grated values of lift and moment are correct to first order. Khplan .
(reference 10) and Schmieden and Kawalki (reference 11) have indicated
that this result extends to the second approximation for subsonic’flow,
so that probably no real difficulty exists..

Secondly, if the wing has supersonic edges, the failure of the
iteration process along Mach lines from the apex canbe e~ctedto
affect the surface pressures. Again it is possible that integrated
values will.be correct to second order. Otherwise, it maybe possible
to adjust the solution in those regions, in a manner similar to that
shown in the diagram of Mach lines in the section llFlokpast a corner
and a parabolic bend.” /

H&her approximations.- It seems unlikely that a third or higher

approximation would ever be justified. Other neglected factors, chiefly
viscosity and heat conduction, should certainly be considered first.

.
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However, the Busemann second-order result has been @ended to tjhtidand
even fourth order (reference 33), and various writers have considered
the third approximation for plane stisonic”flow (references 5, 7, and 8).
If a third approximateion should be considered worth while, the iteration
could be repeated. Again the cases of flow past a curved wall and a
cone would serve as helpful ~ples.

Application to subsonic flow.- The iteration equation and the
particular integrals are in no way restricted to supersonic flow. The
partic- solution for plane flow might profitably be compared with the ,
mibsonic solutions of references 4 to 10.

The particular solution for axially symmetric flow makes possible
a second-order solution for bodies of revolution at subsonic speed. In .
this case, the integral equation canbe treatedby the methods used for
the airship problem.

California Institute of Technology
Pasadena, Calif., Dectier 9, 1949
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. SYMBOLS

constant reference radius for body of revolution

abscissa at which source distribution for body of
revolution begins

constants determined by boundary conditions

local.speed of sQund

constant coefficients

pressure coefficient

of series

complete elliptic integral of the
modulus k

source-distributionfunctions for

known right-hand side of nth-order

continuous function of order unity
for x~O

second kind with

body of revolution

iteration e~uation

which VaIliSheS

arbitrary functtons of one variable

complete elliptic integral of the first kind with
modulus k

free-stream lkch number

local static pressure

Pn points on body of revolution
is imposed

q local speed of flow .

at which tangency condition

r radius in cylindrical.coordinates

- -. .- - -. - --- . --- - --- -- --— — --- ——- —. — .- —-—.-——— -—----- --— —-- ----- --—-.
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R(x)

s(x)

t

U,v,w

u

X,Y,Z
X,R,C3

}X,T,f3 -

a

7

e
.

P

T

NACA TN 2200

radius of meridian curve of body of revolution

.cross-sectio~ area of body of revolution

conical variable
()
g
x

perturbation velocity components in Cartesian or cylindrical
coordinates

‘free-stresmvelocity ,.

Csrtesian coordinates with x in free-stream direction

oblique axes (see diagram df coordinate systems in section
entitled ‘tIncltnedcone”)

angle of attack

/

,6

.

adiabatic exponent

ang&z&mtatiOn of shockwave on cone due to angle of

parameter small cctmparedwith unity

azimuthal variable in.cylindrical coordinates

angle of shockwave from free-stream direction

Cartesian coordinates of variable point “

body coordinates (see diagram of coordinate systems in
section entitled “Jnclined cOne”)

local density

conical variable referredto x=~ rat-r than x= O

additional second-orderperturbation potential

first-o der.(linearized)perturbation potential, same
tas @ 1)

---— -- . - --
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( )(n)

( )(1)

( )(m) “

(–) .
Subscripts:

c

o

s

1, 2

57

exact perturbation potential

nth-order perturbation potential

nth term in series expansion of perturbation potential
●

second-order correction potential ●

particular solution of second-order iteration equation

partial particular solution for three-dhensional flow

complete velocity potential

auxiliary variable (see equation (I-29))

result of nth iteration

independent of o (see equation (127)j

proportional to a cos Cl (see equation (127))

conical potential; for example, @ . X3
.

differentiation in cross-stream direction - component of
normal direction which is perpendicul~ to free stream

free-stream conditions

surface of cone

values ahead of and pehind a corner
.

.

I
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